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Abstract. The influence of doping of Li-clusters by electronegative O and C atoms on the ionization poten-
tials was investigated. Experimentally, we report ionization potentials for bare Lin clusters (10 ≤ n ≤ 70)
deduced from photoionization efficiency spectra. The values are compared with the results for LinO and
LinC clusters. Observed differences are largely attributed to a quantum size effect caused by the segre-
gated molecular part around the impurity, which changes the electron work function. Theoretically, the
Fermi and exchange-correlation energies which enter the work function, are calculated in the frame of the
augmented plane wave (APW) method by taking explicitly into account the presence of the molecular
core. The other contribution to the work function, the moment of the double layer at the cluster surface,
is computed by solving the corresponding Poisson’s equation.

PACS. 36.40.-c Atomic and molecular clusters – 36.40.Cg Electronic and magnetic properties of clusters

1 Introduction

The advent of investigations of binary clusters has drawn
the attention upon the stability of atomic micro-objects
consisting of metal atoms surrounding an electronegative
impurity [1–8]. Some of these show non-stoichiometric
structures, i.e. the octet rule of the chemical bonding is
apparently broken. Such systems are usually called hyper-
valent molecules [1–7]. However, by increasing the num-
ber of metal atoms, the appropriate characteristics of the
transition to metallicity appear progressively, accompany-
ing a structural transition. Recent experimental and the-
oretical studies on metal-rich clusters provided significant
information pertaining to segregation between a stoichio-
metric ionically bound part and the excess metallic com-
ponent [9–18].

It is the purpose of this paper to examine the effect of
the molecular part segregation on the physical properties
of such a binary system during the ionization process. We
compare the ionization potentials of bare metallic clusters
and metallic clusters doped with an electronegative ele-
ment. The systems under investigation are lithium (Lin),
lithium monoxide (LinO) and lithium monocarbide (LinC)
clusters. The ionization potentials were determined by ex-
periment in the size range 2 ≤ n ≤ 70. Observed dif-
ferences between bare Lin clusters and C and O doped
lithium clusters are attributed to a quantum size effect.
The quantum size effect is due to the “molecular” part seg-
regated around the impurity which is confining the valence
electrons into a higher density. It perturbs the electronic
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density of states leading to different internal contributions
to the work function. These are explicitly computed in the
present work and the effect of the molecular inner core on
their values is thoroughly discussed.

In the cluster size range of hypervalent molecules con-
sisting of several metal atoms and an electronegative im-
purity, the binding seems to have a dominant ionic charac-
ter. Obviously, the ionization potentials must differ from
those of the pure metal systems. Consequently, the ioniza-
tion potentials of the binary systems will depend on the
electronegative character of the solute atom. The fact is
quite consistent with traditional chemical concepts.

By increasing the content of metal atoms, the metaliza-
tion sets in at an early stage. The electronegative dopant
localizes an appropriate number of host atoms (according
to the stoichiometry rule) forming a “molecular” part in-
side the host cluster. The molecular part can be described
as a barrier in the potential well within which the valence
electrons are moving [10]. Therefore, the delocalized elec-
trons are constrained to move in a smaller volume, com-
pared to the bare metal clusters. Assuming that a host
metal atom was substituted by an electronegative impu-
rity of radius r0, the volume of the molecular part can be,
crudely, approximated by

4π
3
R3 =

4π
3
[
(n− 1) r3

s + r3
0

]
− (n− p− 1)

4π
3
r3
s,bin, (1)

where n is the initial number of free valence electrons
in the bare metallic cluster (for simplicity, we shall re-
strict the discussion to single-valent metals) and p stands
for the electrons localized by the electronegative impu-
rity. rs and rs,bin are the inter-electron spaces, being
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proper “metallic” parameters (the Wigner-Seitz radii) for
bare and doped metal clusters, respectively. The Wigner-
Seitz radius is related to the Fermi wave-vector, kF, by
k3

F = 9π/4r3
s . Indeed, the electron density and Fermi level

for doped clusters are no longer the same as for bare
metallic ones. A higher confinement of the electrons raises,
by the Heisenberg uncertainty principle, their momentum
and Fermi energy, kF,bin > kF. (kF refers here to the
bare metallic cluster.) The internal contributions to the
work function are different in the two cases as was already
shown by Burt and Heine [22]. Moreover, under some cir-
cumstances (the statements of the Laue theorem [23]),
these parameters may depend on the boundary conditions.

The differences in the values of the ionization poten-
tials for pure metallic clusters and doped ones still persists
even for larger cluster sizes, above the domain of hyper-
valent molecules. These disappear progressively into the
metal-rich clusters domain, where the metallic behavior
prevails and the perturbation of the “free” electron states
due to the “molecular” core is fully screened.

2 Experimental

Threshold photoionization spectroscopy measurements
were performed on Lin, LinO and LinC clusters yielding
ionization potentials for 2 ≤ n ≤ 70. The results for LinO
and LinC clusters are thoroughly discussed, in references
[16,18] and references [17,19], respectively. A brief sum-
mary of the cluster source and the experimental proce-
dure is given here. More details can be found in references
[16,18].

Clusters are produced by a laser vaporization source
employing a moving rectangular target disk. For these
studies, the target disk was made out of isotopically en-
riched 7Li (99.967% enrichment). Material is vaporized
at 10 Hz by the second harmonic output of a pulsed
Nd:YAG laser. Simultaneously, high purity He gas is re-
leased in the source. This creates a supersaturated metal
vapor which rapidly condenses and forms clusters. A su-
personic expansion into vacuum further cools the clusters
and forms a pulsed molecular beam of clusters directed to-
wards the acceleration stage of a reflectron time-of-flight
mass spectrometer. The neutral clusters are photoionized
by a pulsed laser beam, accelerated by an electrostatic
field and mass analyzed in the spectrometer.

Three different laser systems were used for the pho-
toionization of the clusters. An optical parametric oscil-
lator pumped by a Nd:YAG laser and equipped with a
frequency-doubling device provides tunable pulsed light in
the wavelength range from 225 nm up to 1600 nm, exclud-
ing degeneracy gaps around 355 nm and 710 nm. For the
work measurements described here the gap at 355 nm was
bridged by a frequency doubled pulsed dye laser. The two
laser systems enabled us to record mass abundance spec-
tra for ionization photon energies from 3 eV to 5.5 eV,
with an energy step of 0.04 eV. The third laser system, an
ArF excimer laser, emits laser light at 193 nm (6.4 eV),
providing high enough photon energy to ionize all lithium-
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Fig. 1. Photoionization efficiency curves for selected Lin clus-
ters. The vertical ionization potential is found by extrapolat-
ing the first linear rise in the curves towards the baseline (solid
line).

containing clusters and therefore, is suitable for recording
reference mass abundance spectra.

Photoionization efficiency (PIE) curves can be con-
structed by comparing the mass abundances at different
ionization photon energies. The influence of production
fluctuations in these curves is minimized by proper nor-
malization of the mass abundance spectra using reference
mass spectra recorded at 6.4 eV throughout the measure-
ment. Some PIE curves for bare Lin clusters are shown in
Figure 1. Although the bare Lin clusters have relatively
small abundances compared to the more prominent LinO
and LinC clusters photoionization efficiency curves for Lin
with n ranging from 11 to 70 could be constructed.

From the PIE curves IP values were extracted. They
are plotted in Figure 2 together with earlier reported IP ’s
for LinO [17] and LinC [16]. For the evaluation of the
IP ’s from the PIE curves, the method of extrapolating the
first linear rise in the PIE curves to determine the vertical
ionization potential as the point of intersection with the
baseline was used [20]. Clearly, this assignment procedure
is not unique, but it is generally assumed that linear extra-
polation allows to extract the vertical IP of the clusters. In
Figure 1, some ionization probability can be noticed below
the intercept, which could be attributed to several possible
causes. Due to the presence of different chemical bonds
with Li clusters in the mass spectrum, it can be expected
that there is a contribution of, e.g., CO contaminations
in the PIE curves. Unfortunately, the mass resolution of
our mass spectrometer is far insufficient to distinguish Lin
and Lin−4CO masses (mass difference of only 0.07 atomic
mass units). If the pre-threshold signal corresponds to Lin



F. Despa et al.: The influence of O and C doping on the ionization potentials of Li-clusters 405

0 10 20 30 40 50 60 70
3.0

3.5

4.0

4.5 LinC

Number of Li atoms (n)

3.0

3.5

4.0

4.5 LinO

Io
n

iz
a

tio
n

 p
o

te
n

tia
l (

e
V

) 3.0

3.5

4.0

4.5 Lin

Fig. 2. The experimental ionization potentials of doped and
bare lithium clusters as a function of cluster size n: (top)
bare lithium clusters, Lin; (middle) lithium monoxide clusters,
LinO; (bottom) lithium monocarbide clusters, LinC.

ionization, it may indicate an adiabatic IP lower than the
parameterized vertical IP . With the low production rate
of bare Li clusters and the unknown cluster temperature,
we are not able with the present experimental results to
be more conclusive on the interpretation of the ionization
thresholds. However, the appearance of pronounced steps
at 20 and 40 Li atoms in the size dependence of the IP ’s
argues in favor of the present interpretation of the PIE
curves.

Ionization potentials for small Lin clusters (n ≤ 26)
were previously reported by Dugourd et al. [21], yielding
somewhat lower values for the larger sizes. Although it
could be expected that in that experiment the ionization
potentials for the larger clusters are somewhat underesti-
mated because of thermal tails in the PIE curves owing
to the higher cluster temperature when produced by oven
sources, a clearcut comparison with our results cannot be
made in view of our adopted IP extraction procedure, as
discussed above.

The evolution of the ionization potentials of the doped
lithium clusters (see Fig. 2) shows distinct intensity steps
at n = 10, 22, 42 for LinO and at n = 24, 44 for LinC.
This is interpreted as evidence for metallic behavior with
n− 2, respectively n− 4, delocalized electrons. Deviations
from the gradual drop with size of the IP ’s are clearly
absent for small cluster sizes (n ≤ 6 for LinO and n ≤ 16
for LinC). These can be attributed to specific hypervalent

bonding mechanisms as is discussed at length in references
[16–18]. The ionization potentials of the lithium monox-
ide cluster are systematically larger (0.1−0.15 eV) than
the values of the bare lithium clusters. Although this dif-
ference is much smaller for lithium monocarbide clusters,
the same trend is observed up to n = 45, with a few
exceptions.

3 Theoretical

Theoretical calculations within a continuum approach ex-
plained qualitatively many properties of metallic clusters
[20,24]. Usually, the “Wigner-crystal” model of jellium is
employed. Here, the discrete positive ions are replaced by
a rigid, uniform, positive background with charge density
+en = 3e/4πr3

s (e is the electric charge) inside a sphere of
radius R0. The valence electrons are considered as point
charges sitting at equilibrium positions inside the clus-
ter. The only significant potential acting on an electron is
that due to the positive background charge within a small
volume of radial dimension rs, that is the Wigner-Seitz
cell. The other Wigner-Seitz cells, due to their high sym-
metry, make only multipole contributions to the potential
within the central cell we are considering. These contribu-
tions give rise to higher order jellium correction terms.

Generally, the work to eject an electron from a mi-
croscopic sized object with metallic characteristics is the
ionization energy

IP (R0) = WF + α
e2

4πε0R0
+O(R−2

0 ). (2)

when R0 is large compared to the atomic radius. The
R0 −→ ∞ limit yields the work function WF of the
planar metallic surface. The second term is the elec-
trostatic energy. ε0 is the electric permittivity of free
space. The quadratic term in 1/R0 includes the electronic
“spill out” [24]. The actual electron distribution may ex-
tend, due to the electron wave nature, outside the cluster
surface.

The dimensionless coefficient α entering the electro-
static energy is often used as a fitting parameter for the
experimental curves. In a classical approach [25,26], α is
given by

α (rs) '
1
2

(
1 +

z

9
r3
s

R3
0

+
z2

27
r6
s

R6
0

+ ...

)
, (3)

where z stands for the number of electric charges removed
from the cluster. For large clusters α equals to 1/2 [20,
24]. For binary clusters rs in above is replaced by rs,bin.

If not specified otherwise, we use throughout this paper
the atomic units aH = ~2/me2 = 0.53 Å (Bohr radius) and
e2/aH = 27.2 eV (twice the Rydberg), which render the
square of the electron charge e2 = 1; in addition, we set
Planck’s constant ~ = 1, so that the electron mass m = 1.

To compute the work function for planar metallic sur-
faces, it is assumed that the lowest electronic states are
completely filled, so that the electron is removed from
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the highest energy state of the neutral sample, µ. The
usual expression for the work function is

WF = −µ, (4)

which is reminiscent of Koopmans’ theorem for the re-
moval energy of an electron from an atom, with µ the
eigenvalue within a self-consistent single-particle approach
of the highest occupied state. TheWF can then be written
as the difference of two parts, (i) the energy required to
move the electron through an electrostatic double layer
at the surface of the metal sample (∆V ), and (ii) the
“binding energy” of the electron (εb) [27]:

WF = ∆V − εb. (5)

Here ∆V equals V∞−V0, with V∞ the potential at infinity
and V0 at the planar surface. The “binding energy” is
usually calculated without reference to the surface. This is

εb =
(

3
5
εF + εxc

)
, (6)

where εF is the kinetic (Fermi) energy and εxc stands for
the exchange (εx) and correlation (εc) contributions

εF =
k2

F

2
; kF =

1.92
rs

; (7)

εxc
∼= −

(
3
4
εx + εc

)
= −3

4
0.61
rs
− 0.44
rs + 7.8

·

εx and εc are usually evaluated at the uniform density of
the interior [28,29].

A local density approximation (LDA) as above can
give, under certain circumstances, a reasonable value of
the εxc terms even in a system where the density is far
from uniform, LDA results being successfully applied to
(large) pure metallic clusters [30]. Also, corrections in the
exchange-correlation energy due to the varying electron
density at the cluster surface can be included. These are
proportional to the density gradient [31,32].

For doped clusters there exists a size range in which
the valence-electron density is strongly influenced by the
presence of the impurity. In this paper, the molecular inner
part formed around the electronegative impurity induces
a perturbation of the electronic states, which enhances
the Fermi level. This induces a lowering of the electronic
interspace (rs) by a cluster-size dependent amount. As
a consequence, all the quantities expressed in terms of
rs are altered. Thus, the intrinsic characteristics of the
delocalized electrons, the Fermi level and the exchange
and correlation energies, as well as the other parame-
ters ∆V and α (rs) entering the ionization potentials (see
Eqs. (2, 5)) acquire different cluster size dependent values.

In the following, we define a work function WFbin for
binary clusters, which is a function of the inter-electron
spacing rs,bin, and we evaluate it at every cluster size in
the range under investigation. We regard the electrons as
free everywhere inside the metallic part of the cluster, and
subject to a force only at the boundary with the molecular

core. First, the phase shifts of the valence electron waves
scattered on the molecular inner core are derived in the
frame of the augmented plane wave (APW) method. Then,
by summing them with the Friedel sum rule, we extract
the Wigner-Seitz radius for each size of the binary cluster.

Due to the finite range and finite depth of the clus-
ter potential, the electrons may “spill out” at the cluster
surface. Their density decreases exponentially outside the
cluster surface. The outer electrons give rise to a surface
potential barrier,∆V , which contributes to the work func-
tion. This contribution is evaluated by solving Poisson’s
equation with appropriate boundary conditions.

3.1 A simple way to illustrate the change in the work
function for doped metallic clusters

3.1.1 Change of Fermi energy

A simple way to show how the molecular inner part of
the binary cluster changes the characteristic properties
of the remaining delocalized electrons is to restrict consi-
deration to a particular class of potentials. Specifically, it
is assumed that around the electronegative impurity one
takes an appropriate spherically symmetric potential, de-
limited by a sphere of radius R (the molecular part). For
the binary clusters considered here, R can be written as a
function of rs and rs,bin according to equation (1). Outside
the inscribed sphere, in the metallic part, one chooses the
potential to be constant. Therein, the valence electrons
move freely. Potentials of this type are frequently called
“muffin-tin” potentials. Of course, actual cluster poten-
tials will not be of this form, and it must be assumed (or
hoped) that not too much violence is done to whatever
real problem is being studied by this approximation.

With the above approximation to the potential, the
electronic wave function can be expanded in a set of func-
tions composed of plane waves in the outer region of the
inscribed sphere (the metallic part of the cluster), and a
sum of spherical waves in the interior (the molecular part).
This is the augmented plane wave (APW) method [34]. A
single augmented plane wave is defined to be the function

Φk = a0ϑ (r −R) exp (ik · r)

+
∑
l,m

almϑ (R− r)Rl (εk, r) Ylm (θ, ϕ) . (8)

The function ϑ (r −R) is a unit step function and
Rl (εk, r) is a solution of a radial wave equation
normalized to unity inside the inscribed sphere of radius
R. εk is the energy of the electron having the wave vector
k. The coefficients alm are chosen so that the function Φk

is continuous across the sphere,

alm = 4πila0Y
∗
lm (θk, ϕk)

jl (kR)
Rl (εk, R)

· (9)

Ylm (θk, ϕk) are spherical harmonics, jl stand for spheri-
cal Bessel functions and θk and ϕk refer to the direction
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of the electron wave vector k. The constant a0 has to be
determined from the normalization condition.

Equation (9) implies that Φk would be continuous at
R. Actually, a plane wave cannot in general be joined
smoothly onto spherical waves in the interior of some re-
gion, there must be scattered waves as well. The scattering
phase shifts can be obtained through the relation [34]

tan δl =

1
kRl

dRl
dr

nl (kR)− n′l (kR)

1
kRl

dRl
dr

jl (kR)− j′l (kR)
, (10)

which involves the logarithmic derivative of the radial
wave function Rl, (1/Rl)(dRl/dr), evaluated on the in-
scribed sphere. nl are spherical Neumann functions and
the prime indicates derivative with respect to the argu-
ment of the function.

Equation (10) yields the phase shifts δl owing to the
scattering plane wave (a free electron in the metallic re-
gion of the cluster) on the perturbation potential produced
by the molecular segregated part around the electro-
negative impurity. Evidently, the perturbation changes the
number of states per unit increment of k. The amount
of the density of states fetched by the perturbation ef-
fect is (1/π)(dδl/dk). The total change in the number of
states up to some particular value of k, considering all l
values and the (2l+ 1) substrates for each l, is given by
the Friedel sum rule [34]

1
π

∑
(2l+ 1) δl (εF) =

Ze

2
· (11)

Here, it is assumed that the impurity has an effective
nuclear charge Ze units greater than that of the host.
According to (11), the condition of screening of the per-
turbation at large distances is fully satisfied by bringing
Ze/2 states below the Fermi level.

In this way, by using equations (1, 10, 11) we can de-
termine the change of the Fermi level εF and inter-electron
spacing rs,bin, induced by the action of the inner molecular
part on the remaining free (valence) electrons. The change
of the Fermi level (and electron density) of the clusters un-
der consideration is related to both the remaining volume
of valence electrons and the extra nuclear charge brought
by the electronegative impurity. It also depends on the
appropriate wave function which describes the behavior
of the localized electrons in the molecular part.

The present approach disregards additional effects due
to the non-uniform electron density at the interface be-
tween the molecular and metallic part. Therefore, the cal-
culated Fermi energies could be somewhat underestimated
in this work.

Looking at equation (1) we may observe that by
making p = 0 and r0 ≡ rs,bin = rs, R equals the inter-
electron spacing rs. This corresponds to the case of pure
metallic clusters. Thus, within the APW method, the be-
havior of the electrons in a pure metallic clusters is de-
scribed by plane waves with a certain spherically sym-
metric perturbation at the origin.

3.1.2 The moment of the electric double layer
on the cluster surface

The moment of the electric double layer on the cluster
surface is defined as the difference in potential between a
point outside the surface (V∞) and a point on the surface
(V0). The position of the reference point is somewhat ar-
bitrary (it can also be in the interior), but once chosen, it
fixes the prefactors in the kinetic and exchange-correlation
energies for the electrons [27]. The double layer is due to
the fact that the actual electron distribution may extend
outside the limit of the surface ions (outside the R0 limit,
in our case) and may presumably have sizable density.
Therefore, we focus in the following on the calculus of the
electron density outside the cluster surface. Once the den-
sity of the outer electrons is determined, we calculate the
change in electrostatic potential across the dipole layer
created by the “spilling out” of electrons at the surface.

Generally, the electron density can be written as

ρ (r) =
∑
k

|Φk (r)|2 ϑ (µ− εk) , (12)

where Φk (r) is the appropriate electron wave function.
An electron outside the cluster surface may be described
in our case by a wave function decreasing exponentially
from the cluster surface, that is the asymptotic form of
the Henkel functions of the first kind,

uk (r) =
∑
l,m

e−krblmYlm (θ, ϕ) , r > R0. (13)

The electron wave function (13) has to satisfy also the
continuity requirement at the cluster surface. Therefore,
the coefficients blm are fully determined by joining the
outer electron wave function (13) with that corresponding
to the inner electrons (8) at r = R0,

blm = 4πa0i
lekR0jl (kR0)Y ∗lm (θk, ϕk) , (14)

and imposing the required normalization condition

|a0|2 ω +
∑
l,m

|alm|2 +
∑
l′,m′

|bl′m′ |2 = 1, (15)

where ω is the volume of the metallic part.
The rule for converting summations over quantum

numbers in (12) into integration over wave number k, gives
simply

ρout (r) =
Γ

(2π)3

∫ kF

0

dk
(
k2

F − k2
) ∫

dΩk |uk (r)|2 ,

(16)

for the density of the outer electrons. The volume Γ
in above is established by embedding the cluster un-
der investigation in a supersphere of a variable volume(
Γ = (4π/3)R3

out

)
containing presumably all the outer

electrons.
The change in electrostatic potential across the dipole

layer created by the “spilling out” of electrons at the
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surface, ∆V , is then given by the solution of Poisson’s
equation

∆V = 4πρ (r) , r > R0. (17)

Equation (17) may be solved for V by imposing the fol-
lowing boundary conditions (if the cluster is uncharged):

V = 0 ,
dV
dr

= 0 , as r →∞,
dV
dr

= 0 , as r → R0.
(18)

We can observe that in a “free electron” approximation
the last condition in the above requires that

lim
r→R0

∫ ∞
r

ρ (r) dr = 0.

Its physical meaning is that ∆V will be zero if the elec-
tron distribution is constant for R < r < R0 and zero for
r > R0. We shall make the approximation that, for our
“free electron” model, the potential at the cluster surface
V0 will be, by definition, the moment of the surface double
layer

∆V ≡ V0. (19)

Within the present theoretical model, the barrier at the
cluster surface is essentially due to Coulomb forces and
depends on the cluster size and Fermi energy. Note that,
by the continuity requirement of the wave function at the
cluster surface, the outer electrons preserve the informa-
tion about the perturbation introduced by the molecular
core.

At this point, one additional comment should be made
with respect to the present theory. It was shown that
the exchange and correlation forces have a major role in
determining the moment of the dipole barrier at the sur-
face, while the Coulomb forces become less important [27,
35–37]. We must note that, actually, the ordinary elec-
trostatic potential contributes slightly to the moment of
the dipole barrier only in the large limit of valence elec-
tron number of macroscopic samples where the screen-
ing among the electrons is high and the potential has a
smooth oscillating behavior, therefore. This is, for exam-
ple, the case of the jellium model. According to the Budd-
Vannimenus theorem, the potential at the jellium surface
is lowered, in the limit of dominance of bulk properties, by
a constant amount determined by the combined exchange
and correlation terms [33]. For microscopic sized objects,
the screening inside the cluster will be lowered and the
balance among various contributions to the effective clus-
ter potential will be somewhat changed. Also, the curva-
ture of the surface can play an important role. The electric
field, which contains the outer electrons, will act more pro-
foundly to expel the positive charge near the surface, in
this case. The potential barrier at the cluster surface must
depend on the cluster size.

4 Results

We determine the change of the Wigner-Seitz radius, rs,bin

(and the Fermi energy εF,bin), induced by the interaction
of the remaining “free” electrons with the “molecular”
core. In order to do that, we solve the system of equations
given by (10, 11) where the approximate size of the inner
molecular part of the cluster is derived from (1). The pa-
rameter r0 (see Eq. (1)) is identified here with the covalent
radius of the impurity. Therefore, we used r0 = 1.38 a.u.
for O and r0 = 1.45 a.u. for C, respectively [38]. The quan-
tity Ze entering (11) , which measures the difference be-
tween the effective nuclear charge of the electronegative
impurity and that corresponding to the host atom was
calculated according to Slater’s rules. This is 2.6 for car-
bon doped lithium clusters and 3.9 for the oxygen doped
lithium clusters. For the radial wave function Rl, we used
a Gaussian function

Rl = rν+l exp
(
−γr2

)
, (20)

normalized to unity inside the inscribed sphere of radius
R. ν is the principal quantum number of the impurity
valence shell and γ a parameter determined by a fitting
procedure. Thus, the value of γ was varied to approach in
the limit of large cluster sizes (n� 70) the Wigner-Seitz
radius for pure lithium (rs = 3.24 a.u.) [39]. The values of
γ we found are 0.168 for LinO clusters and 0.19 for LinC
clusters, respectively.

The inter-electron spacing rs,bin against the cluster
sizes n are displayed in Tables 1 and 2. For both bi-
nary systems, these are smaller in comparison with the
corresponding value of bare lithium ones. We can observe
that in the domain of small clusters (n . 30) , the rs,bin

parameter for the LinC system seems to be much more af-
fected by the molecular part in comparison with the LinO
system. This is due to the fact that the carbon atom lo-
calizes 4 of the host lithium atoms and the molecular part
is larger for the LinC clusters. Therefore, the valence elec-
trons are more strongly confined in the remaining metal-
lic part. For the cluster sizes of our interest, the inter-
electron spacing spreads between 3.138 a.u. and 3.197 a.u.,
for LinO and between 3.111 a.u. and 3.2 a.u., for LinC.
The above arguments show that the size of the molecular
inner part plays an important role in the present model.

All the internal contributions to the “binding” en-
ergy εb (see Eq. (6)) entering the work function WFbin

are simply computed by using equation (7) with the
corresponding Wigner-Seitz radii derived as above.

The potential barriers V0 were computed by solving
numerically Poisson’s equation (17) under the boundary
conditions given by equations (18). The integration mesh
in real space was over the radial distance between R0 and
Rout, which is presumably the distance of the “spilling
out” of electrons at the cluster surface. The electric field
due to the outer electrons must vanish over this distance.
In our calculus, Rout was set to 1.3R0. The fraction of the
outer electrons was renormalized for every cluster size.
The experimental ionization potentials for the LinO sys-
tem were reproduced with a good accuracy in the limit
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Table 1. The theoretical values for Wigner-Seitz radii (rs,bin)
and the surface potential barriers of the LinO system for the
cluster sizes (15 ≤ n ≤ 70) .

n rs,bin V0 n rs,bin V0

(a.u.) (eV) (a.u.) (eV)
15 3.138 0.230 43 3.177 0.399
16 3.139 0.250 44 3.178 0.402
17 3.140 0.270 45 3.179 0.405
18 3.142 0.285 46 3.180 0.408
19 3.143 0.300 47 3.180 0.411
20 3.144 0.310 48 3.181 0.414
21 3.145 0.314 49 3.182 0.417
22 3.148 0.318 50 3.183 0.420
23 3.149 0.322 51 3.184 0.422
24 3.150 0.325 52 3.185 0.424
25 3.153 0.330 53 3.186 0.426
26 3.154 0.335 54 3.187 0.428
27 3.156 0.340 55 3.188 0.430
28 3.158 0.345 56 3.189 0.433
29 3.160 0.350 57 3.189 0.436
30 3.160 0.355 58 3.190 0.439
31 3.162 0.357 59 3.190 0.442
32 3.163 0.359 60 3.190 0.445
33 3.164 0.362 61 3.191 0.447
34 3.166 0.366 62 3.192 0.449
35 3.168 0.369 63 3.192 0.452
36 3.169 0.372 64 3.193 0.455
37 3.170 0.375 65 3.194 0.460
38 3.171 0.380 66 3.194 0.463
39 3.172 0.385 67 3.195 0.466
40 3.174 0.390 68 3.195 0.469
41 3.175 0.393 69 3.196 0.472
42 3.176 0.396 70 3.197 0.475

of large clusters (see Fig. 3b) for a fraction of outer elec-
trons equal to fLinO = 0.195. The fraction of outer elec-
trons we found for LinC clusters (f2) is larger in com-
parison with LinO clusters, a good agreement with the
experimental data (see Fig. 3c) being obtained for fLinO =
0.22. The larger size of the molecular inner core of the
LinC system seems to produce a stronger “spilling out”
effect of the valence electrons. In the case of pure Lin
clusters, the fraction of the outer electrons, which leads to
a good fit to the experimental data, is about fLin = 0.175
from the entire amount of delocalized electrons. We can
observe that the amount of outer electrons we found for
each system we investigated is in direct proportion to the
geometrical dimension of the perturbation center.

In Tables 1 and 2, the values for V0 of lithium monoxide
and lithium monocarbide clusters are displayed for each
cluster size n in the investigated size range with the cal-
culated values for the inter-electron space. In Table 3, the
same as above is shown for bare lithium clusters except
for the Wigner-Seitz radius which was set to the bulk
value rs = 3.24 a.u. [39]. The small differences one can
observe among the values of the surface potential barriers
at the same cluster size of different systems are due to the

Table 2. The same as above for the LinC system for the cluster
sizes (16 ≤ n ≤ 70) .

n rs,bin V0 n rs,bin V0

(a.u.) (eV) (a.u.) (eV)
16 3.111 0.220 44 3.180 0.318
17 3.116 0.224 45 3.181 0.322
18 3.120 0.227 46 3.182 0.326
19 3.125 0.231 47 3.183 0.331
20 3.130 0.235 48 3.184 0.334
21 3.133 0.237 49 3.185 0.338
22 3.136 0.240 50 3.186 0.340
23 3.140 0.243 51 3.187 0.344
24 3.143 0.246 52 3.188 0.348
25 3.145 0.249 53 3.189 0.352
26 3.148 0.252 54 3.190 0.356
27 3.150 0.255 55 3.190 0.360
28 3.153 0.259 56 3.191 0.364
29 3.155 0.262 57 3.192 0.366
30 3.158 0.265 58 3.192 0.370
31 3.160 0.269 59 3.193 0.372
32 3.162 0.273 60 3.194 0.375
33 3.164 0.276 61 3.194 0.377
34 3.166 0.279 62 3.195 0.380
35 3.168 0.282 63 3.196 0.383
36 3.169 0.285 64 3.197 0.385
37 3.170 0.290 65 3.197 0.388
38 3.172 0.293 66 3.198 0.392
39 3.173 0.297 67 3.198 0.397
40 3.174 0.300 68 3.199 0.404
41 3.176 0.304 69 3.199 0.408
42 3.178 0.308 70 3.200 0.412
43 3.179 0.312

presence of the perturbation center. The perturbation in-
duced by the “molecular” core is equally felt by all the
valence electrons, including the outer ones. Anyway, these
differences disappear progressively with increasing cluster
size, the perturbation due to the electronegative impurity
being fully screened in the limit of large cluster sizes.

Another observation apparent in Tables 1, 2 and 3 is
the increasing trend for V0 towards large cluster sizes. This
can be understood by taking into account the amount of
outer electrons at each cluster size. The number of the
“spilling out” electrons is directly related to the cluster
size, which increases with increasing cluster size. Con-
sequently, the outer field, which is a measure of the
outer electron number, is very sensitive to the cluster
size. Therefore, the values for V0 increase slightly with
increasing cluster size and approach asymptotically the
value for a planar surface of a macroscopic sample. A
self-consistent calculation of the effective potential yields
V0 = 0.6061 eV for rs = 3 a.u. and V0 = 0.5967 eV for
rs = 4 a.u. for a planar surface [40]. From the present
approach, we estimate that the value of the planar sur-
face potential barrier is reached for a number of about
100 atoms. From this limit on, the surface potential bar-
rier becomes independent of the cluster size.
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Fig. 3. The theoretical ionization potentials (solid line) com-
pared with the corresponding experimental ones (open dots)
as a function of cluster size n: (top) bare lithium clusters, Lin;
(middle) lithium monoxide clusters, LinO; (bottom) lithium
monocarbide clusters, LinC.

Table 3. Theoretical surface potential barriers (V0) of Lin
clusters (10 ≤ n ≤ 70).

n V0 n V0 n V0

(eV) (eV) (eV)
10 0.180 31 0.286 52 0.356
11 0.185 32 0.292 53 0.359
12 0.190 33 0.298 54 0.362
13 0.195 34 0.303 55 0.365
14 0.200 35 0.305 56 0.368
15 0.205 36 0.308 57 0.371
16 0.210 37 0.312 58 0.374
17 0.215 38 0.315 59 0.377
18 0.220 39 0.317 60 0.380
19 0.225 40 0.320 61 0.383
20 0.230 41 0.323 62 0.386
21 0.235 42 0.325 63 0.389
22 0.240 43 0.328 64 0.392
23 0.245 44 0.331 65 0.395
24 0.250 45 0.334 66 0.398
25 0.255 46 0.337 67 0.401
26 0.260 47 0.340 68 0.404
27 0.265 48 0.343 69 0.407
28 0.270 49 0.346 70 0.410
29 0.275 50 0.350
30 0.280 51 0.353

5 Conclusions

Ionization potentials of lithium clusters containing up to
70 atoms were compared to the ionization potentials of
lithium clusters doped by electronegative impurities (oxy-
gen and carbon).

Observed differences in the values of the size dependent
ionization potentials are mainly attributed to a quantum
size effect due to the molecular core segregated around
the impurity which acts to confine the valence electrons
into a higher density. This perturbs the electronic density
of states leading to different internal contributions to the
work function. The change of the metallic characteristics
of the binary cluster is therefore a measure of the pertur-
bation strength induced by the electronegative impurity
and is observed in the ionization potentials.

The segregation of the molecular part around the elec-
tronegative impurity can also be seen as a local change
of the interatomic potential and chemical bond lengths.
Then, restoring forces acting against formation of the
curved interface between “metallic” and “molecular” parts
of the cluster will appear, a fact which can be expressed in
terms of interface tension. Furthermore, if one wishes to
consider the discrete nature of the binary system, a confi-
gurational entropy term due to the different combinations
of atoms that constitute the “molecular” and “metallic”
parts can be straightforwardly defined.

In conclusion, the metallic characteristics of metal
clusters doped with electronegative impurities are signi-
ficantly altered at small cluster sizes mainly due to the
quantum size effect. The metallic characteristics definitely
predominate in the range of larger cluster sizes where
the perturbation of the “free” electron states due to the
“molecular” core is fully screened.
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C. Bréchignac, Ph. Cahuzac, M. de Frutos, P. Garnier, Z.
Phys. D 42, 303 (1997).

14. P. Labastie, J.M. L’Hermite, Ph. Poncharal, M. Sence, J.
Chem. Phys. 103, 6362 (1995).

15. R. Antoine, Ph. Dugourd, D. Rayane, E. Benichou, M.
Broyer, J. Chem. Phys. 107, 2664 (1997).

16. P. Lievens, P. Thoen, S. Bouckaert, W. Bouwen, E.
Vandeweert, F. Vanhoutte, H. Weidele, R.E. Silverans, Z.
Phys. D 42, 231 (1997).

17. P. Lievens, P. Thoen, S. Bouckaert, W. Bouwen, F.
Vanhoutte, H. Weidele, R.E. Silverans, Chem. Phys. Lett.
302, 571 (1999).

18. P. Lievens, P. Thoen, S. Bouckaert, W. Bouwen, F.
Vanhoutte, H. Weidele, R.E. Silverans, A. Navarro-
Vázquez, P.v.R. Schleyer, J. Chem. Phys. 110, 10316
(1999).

19. P. Lievens, P. Thoen, S. Bouckaert, W. Bouwen, F.
Vanhoutte, H. Weidele, R.E. Silverans, A. Navarro-
Vázquez, P.v.R. Schleyer, Eur. Phys. J. D 9, 289 (1999).

20. W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993).
21. Ph. Dugourd, D. Rayane, P. Labastie, B. Vezin, J.

Chevaleyre, M. Broyer, Chem. Phys. Lett. 197, 433 (1992).
22. M.G. Burt, V. Heine, J. Phys. C 11, 961 (1978).
23. C. Kittel, in Quantum Theory of Solids (John Wiley &

Sons, New York, 1963).
24. M. Brack, Rev. Mod. Phys. 65, 677 (1993).
25. M. Seidl, J.P. Perdew, Phys. Rev. B 50, 5744 (1994).
26. F. Despa, Z. Phys. D 37, 347 (1996).
27. G.D. Mahan, W.L. Schaich, Phys. Rev. B 10, 2647 (1974).
28. R.M. Dreizler, E.K.U. Gross, Density Functional Theory

(Springer, Berlin, 1990).
29. R.G. Parr, W. Yang, Density Functional Theory of Atoms

and Molecules (Oxford University Press, New York, 1989).
30. R.O. Jones, in Clusters of Atoms and Molecules (I), edited

by H. Haberland (Springer, Berlin, 1995), p. 67.
31. J.P. Perdew, S. Kurth, A. Zupan, P. Blaha, Phys. Rev.

Lett. 82, 2544 (1999).
32. S. Kurth, J.P. Perdew, Phys. Rev. B 59, 10461 (1999).
33. H.F. Budd, J. Vannimenus, Phys. Rev. Lett. 31, 1218

(1973).
34. J. Callaway, Quantum Theory of the Solid State (Academic

Press, New York, 1974).
35. R. Monnier, J.P. Perdew, D.C. Langreth, J.W. Wilkins,

Phys. Rev. B 18, 656 (1978).
36. J. Perdew, V. Sahni, Solid State Commun. 30, 87 (1979).
37. C.Q. Ma, V. Sahni, Phys. Rev. B 19, 1290 (1979).
38. Webelements,

http://www.shef.ac.uk/chemistry/web-elements/

39. N.W. Ashcroft, N.D. Mermin, in Solid State Physics
(Saunders College Publishing, Forth Worth, 1976).

40. N.D. Lang, W. Kohn, Phys. Rev. B 3, 4555 (1971).


